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Abstract A closed form procedure to determine kinetic constants for NR vulcanized
with sulphur is presented. The kinetic scheme originally proposed by Han et al. (Poly-
mer (Korea) 22:223-230, 1998) and further modified by Milani et al. (Polym Test
32:1052-1063, 2013) is adopted as starting point to deduce a closed form expression
for rubber curing degree. Rheometer experimental data collected at different temper-
atures are used to tune model parameters. After the normalization of the rheometer
curves and the exclusion of induction period from calculations, the model requires
the estimation of three kinetic constants, two of them describing incipient curing
and stable crosslinks formations, the last reproducing reversion phenomenon. Whilst
such constants are almost always determined by least-squares best fitting, here a
numerical iterative procedure—much more stable and efficient from a computational
standpoint—is proposed. The approach requires as input parameters only the degree
of vulcanization at infinite (i.e. at the end of vulcanization), the instant where the
maximum torque is reached and initial rate of vulcanization. The condition that the
numerical curve reaches a maximum at a given time translates mathematically into a
non-linear equation in two of the kinetic constants, which are determined iteratively
in the paper. The numerical initial vulcanization rate is tuned in such a way to globally
minimize the absolute error between numerical and experimental curves. The main
capability of the procedure proposed stands in the very straightforward determination
of reaction kinetic constants, avoiding demanding least-squares fittings on rheometer
experimental data. A set of experimental data available, relying into rheometer curves
of the same rubber blend conducted at five different temperatures are used to estimate
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the fitting capabilities of the mathematical model proposed. Very good agreement with
experimental data is observed.

Keywords Vulcanization - Accelerated sulphur - Mathematical model - Natural
rubber - Experimental results fitting - Closed form solution - Closed form determination
of kinetic constants

1 Introduction

The vulcanization with sulphur of natural rubber (NR) dates back to the second half
of nineteenth century. Unfortunately it is particularly complex, involves long polymer
chains with single and multiple transversal sulphur bonds, it exhibits deterioration of
the mechanical properties after long curing at high temperatures (reversion), it is pro-
moted when a number of accelerators and coadiuvants are added to the blend, improves
considerably when loaded with carbon black, all the ingredients mixed together in
variable concentrations, almost always not known by the providers. For these reason,
despite the immediate success and its widespread diffusions in practical applications
within automotive industry, tires and many other fields, its chemistry of reaction is
still for some extent not fully clear [1,2]. As a consequence, it remains difficult to
propose efficient numerical tools aimed at predicting the vulcanization degree of a
given rubber item, in relation, also, to the typology of rubber investigated.

The traditional and cheapest experimental test used within the rubber industry to
have an insight into the degree of vulcanization of a blend during thermal curing is
certainly the rheometer test [3]. A rheometer is a device where a rubber sample of few
grams is cured at constant temperature. In traditional rheometers, a disc present inside
the vulcanization chamber, oscillates regularly with small angles (typically 3 °). The
resistance to oscillation is measured with the torque applied to the disc. The resultant
time—torque curve is the fingerprint of the blend, varying considerably from blend to
blend and for the same blend at different temperatures. Some features are however
common to all samples: torque generally starts to increase very slowly (or decreases)
during a so called “induction” period, after which curing starts to take place quite
fast, with an increase of the crosslink density and hence of the measured macroscopic
torque. Very frequently, NR exhibits also marked reversion, a phenomenon that usually
is more visible at high temperatures and that consists into a decrease of the measured
torque. Typically reversion is attributed to the formation and subsequent degradation
of poly-sulphidic (S-S or more) crosslinks [4—7], which are thermodynamically less
stable than mono-sulphidic links [7].

There is experimental evidence of polysulfidic structures obtained with costly IR,
UV, ESR and Raman characterizations [8,9] or with chemical methods [10], as well
as solid state '3C nuclear magnetic resonances (NMRs) [11-13]. It has been shown
that for EPDM, the polysulfidic structures are consistent with predictions based on
model compounds and the presence of three different allylic positions in the repeating
unit of NR [11]. The percentage of each polysulfidic structure and the number of
concatenated sulphur depend on both rubber structure and curing temperature and
time of exposition [14]. It is also interesting to point out that experimentation shows
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that, at the beginning of vulcanization, more C—Sx—C (x = 4,5 or more) bonds
are present. It is intuitively assumed that (C—Sx—C) polysulfidic crosslinks further
react, leading either to shorter crosslinks (C—S—C and C-S—S-C), through a so called
“maturation reaction”, or to cyclic polysulfidic structures (backbiting). By means of
maturation, crosslinking density decreases, and this explains from a chemical point of
view the macroscopically observed reversion.

As well-known from decades, reversion phenomenon is linked to temperature: high
curing temperatures are always associated to fast vulcanization with torque drops
immediately after maximum point; conversely, at low temperatures rheometer curves
exhibit no reversion with low curing rates. It is interesting to point out that very
recently, Leroy et al. [15] and Milani et al. [16—18] have shown numerically that the
ratio between thermally stable (short) and unstable (long) polysulfidic crosslinks seems
not significantly influenced by cure temperature, instead they seem strictly related to
the typology of accelerators used, and hence to the chemical nature of the activated
complexes inside the blend.

There are several models in the literature that allow a fair prediction of the curing
percentage of NR vulcanized into a rhoemeter. Most of them are mechanistic, as
those by of Coran [6], Ding and Leonov [19,20], Kamal and Sorour [21] or a semi-
mechanistic (model of Han et al. [1], Loroy et al. [15], Milani et al. [2,18]).

The majority of such approaches is based on a preliminary presentation of the
kinetic scheme describing in an approximate way NR sulphur curing. Such scheme is
obviously a simplification of the real one and comes from the translation of macro-
scopic observations (e.g. induction, primary curing, stabilization and reversion) into
chemical reactions. From classic kinetic theory, the set of chemical reactions is again
translated into mathematics, namely a system of partial differential equations (PDEs).

To provide a rheometer curve, the system of differential equations must be solved
numerically through a Runge-Kutta approach. This is certainly a drawback, also in
light of the fact that practitioners active in this field are not always familiar with
classic but non trivial numerical procedures like those necessary to deal with PDEs,
or simply they do not dispose of licensed dedicated software. The second important
limitation is that an estimate of such kinetic constants should be done minimizing the
total error of the numerical curve on the normalized experimental one. Least-squares
fitting is the most popular approach. In practice, the combination of PDEs and least-
squares means the iterative solution of several PDEs, until a converged solution is
found by least-squares. Unfortunately, for the problem at hand, it is possible to find
sub-optimal solutions where the experimental rheometer curve fitting is satisfactory
but the estimation of the kinetic constants is totally unrealistic. This is rather common
in presence of non linear problems with multiple local minimum points or absolute
minimum point with local curvature tending to zero, at least in pre-defined directions,
as already demonstrated in [22].

Leroy et al. [15] have recently proposed a modification of Han et al. [1] and
Colin et al. [23] approach, able to provide a continuous prediction of the induc-
tion/vulcanization/reversion sequence. The procedure has been then refined further
by Milani et al. in [2], where a non trivial kinetic scheme with seven constants has
been proposed, describing reversion by means of the distinct decomposition of sin-
gle/double and multiple S-S bonds. Some other approaches roughly basing on the
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same principles may be also found in [16—18]. However, in almost all the totality of
the cases, the two major limitations previously described are not circumvented and the
final success of the method is strongly dependent on the starting point adopted within
the least squares routine adopted.

In the present paper, attention is focused on finding a procedure to determine kinetic
constants without the utilization of both Runge-Kutta solvers and least squares opti-
mization routines.

In particular, for the sake of simplicity, the general reaction scheme proposed by
Han et al. [1] for vulcanized sulphur NR is assumed as initial base to interpret NR
rheometer tests. No slight modifications are introduced, in order to make the results
reproducible to any practitioner interested in the prediction of the kinetic behavior of
NR cured with sulphur. Despite its limitations, Han et al. [1] model has the advantage
to provide a closed form expression for the vulcanization degree, i.e. the utilization
of a Runge-Kutta approach to solve a system of differential equations is not needed.
However, three kinetic constants must be determined in the model by least-squares
fitting on the experimental rheometer curves, thus the numerical complexity remains,
with all the typical limitations linked to non-linear optimization (lack of convergence,
multiple solutions, quasi optimality of some solutions far from the real one, etc.).

Here a different approach is proposed, that avoids the utilization of both Runge-
Kutta routines to solve PDEs and least-squares procedures to fit experimental data.

The computational base adopted is represented by the kinetic scheme proposed by
Han et al. [1]. Despite its rough approximations, it has the undoubtable advantage
to provide a closed form expression for the vulcanization degree. In agreement with
consolidated literature in the field, the rheometer test is assumed as the base to tune
numerical kinetic constants.

After the normalization of the rheometer curves and the exclusion of induction
period from calculations, the model requires the estimation of three kinetic constants,
two of them describing incipient curing and stable crosslinks formations, the last
reproducing reversion phenomenon.

As a matter of fact, see for instance Leroy et al. [15], kinetic constants are estimated
by least-squares best fitting. However, such approach, whilst is undoubtable very
straightforward at the same time proved to be rather cumbersome, sometimes fails to
converge and/or provides suboptimal solutions, i.e. numerical rheometer curves very
near to the experimental ones, but with associated kinetic constants totally wrong.
In order to avoid such kind of difficulties, here a new and totally different procedure
is proposed, which is intrinsically stable and is capable of providing both very good
approximations of the experimental rheometer curves and reasonable estimates of
kinetic constants, at a fraction of the time needed by least-squares fitting.

The procedure requires as input parameters only the degree of vulcanization at infi-
nite (i.e. at the end of vulcanization), the instant where the maximum torque is reached
and the initial rate of vulcanization. The condition that the numerical curve reaches a
maximum at a given time translates mathematically into a non-linear equation in two
of the kinetic constants. The implicit curve representing such condition is determined
iteratively. Finally, the numerical initial vulcanization rate is tuned in such a way to
globally minimize the absolute error between numerical and experimental curves.
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Table 1 Rubber blend

composition tested in rheometer Component Parts (by weight
experimentation of Fig. 1 Rubber gum 100

Carbon black 25

Oil 5

(Zn0 / stearic acid) activator 6

Sulphur 3

Amine antioxidant 2

To estimate the fitting capabilities of the mathematical model proposed, five
experimental rheometer curves at different temperatures on a same rubber blend are
considered. Very good agreement with experimental data is observed.

The main novelty of the model stands therefore in the closed form determination
of the kinetic constants representing the rates of the single reactions in the kinetic
scheme adopted.

The evaluation of kinetic constants at three vulcanization temperatures, after proper
check of the linearity in the Arrhenius space, allows performing numerical simulations
at curing temperatures outside the range experimentally inspected, making the model
predictive in all those cases where a wide experimental campaign is not possible.

2 Experimental rheometer curves used to benchmark the numerical
model

Some experimental data referred to the isothermal curing of a NR blend with properties
reported in Table 1 are at disposal from [2] and [15]. The blend was studied at five
different temperatures, from 130 to 170 °C, with a temperature step equal to 10 °C.
A Moving Die Rheometer MDR in dynamic mode (1 Hz) was used to collect the
experimental curves.

The torque S’ (t) experimentally determined can be then used to estimate the vulcan-
ization degree ayp(t), using the following relationship proposed by Sun and Isayev
[24]:

s’ (t ) — SminT

Qoxp (1) = ——2 "ol (1)
pr() SmaxTo - SminTo

where:

— Smin7 is the S’ minimum value at temperature 7. Before reaching this minimum
value, aexp is considered equal to zero.

— SminTo and Spaxto are the minimum and maximum torque values at a curing
temperature equal to T low enough to allow neglecting reversion. In other words,
the low temperature “reversion free” increase of mechanical properties during cure
is taken as a reference, to estimate the influence of reversion at higher temperatures,
which obviously results in a final degree of vulcanization lower than 100 %.

Figure 1a shows the typical torque—curing time curves obtained experimentally at
the different vulcanization temperatures. As can be noted, the reversion phenomenon,
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Fig. 1 a Experimental rheometer curves at temperatures from 130 to 170 °C (step 10°C) b calculated
vulcanization degree curves from Sun and Isayev [24] relationship (note induction, i.e. the curve before

scorch point, is not excluded from computations)

which can be clearly observed at 160 and 170 °C, almost vanishes at 140 °C and
at 130°C, where the torque clearly reaches a horizontal plateau at the end of the

experiments.

3 Han’s model and iterative evaluation of kinetic constants

The basic reaction schemes assumed are classic and refer to existing literature in the
field. Such schemes are known from the scientific literature, as mentioned above, see

for instance [1,2,15,19,25].
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Here for the sake of simplicity, the Han’s model [1] is assumed, which will be
briefly recalled in what follows.

As universally accepted, many reactions occur in series and parallel during NR
curing with sulphur. After a viscous phase which characterizes the uncured rubber
at high temperature and called “induction”, the chain reactions are initiated by the
formation of precursors, characterized by the kinetic constant K.

Then, curing proceeds through two pathways, with the formation of stable and
unstable unmatured cured rubber. The distinction between stable and unstable cur-
ing stand in the presence of single or multiple sulphur bonds respectively. Multiple
S-S bonds are intuitively less stable, and the evolution to matured cross-linked rub-
ber is again distinct between the single S link between chains and the multiple one,
statistically much less strong and leading to break with higher probability.

All the reactions considered occur with a kinetic velocity depending on the curing
temperature, associated to each kinetic constant.

Let us assume that K; is the i-th kinetic constant associated to one of the previ-
ously described phases, so that K¢ describes induction, K1 and K, the formation of
unmatured polymer, one stable and the other instable, and K3 describes reversion.

Within such assumptions, we adopt for NR the kinetic scheme constituted by the
chemical reactions summarized in the following set of equations:

[Ac] + 5123 [47]
* ky *

[AT] = [RY]

[41] 3 [R1]

(ki1 [RP] @

In Eq. (2), [A.] is a generic accelerator, [S] is sulphur concentration, [A’f] the sulphu-
rating agent, [RT] the stable crosslinked chain (S-S single bonds), [R;] the unstable
vulcanized polymer, [RY] the de-vulcanized polymer fraction (reversion). Ko,1 2.3
are kinetic reaction constants. Here it is worth emphasizing that K¢ 1 2,3 are temper-
ature dependent quantities, hence they rigorously should be indicated as K¢, 123 (T),
where T is the absolute temperature. In what follows, for the sake of simplicity, the
temperature dependence will be left out.

The interaction between K| and K>, from a chemical point of view, is associated
with the formation of the activated complex and hence is linked to the activity and
concentration of [Aﬂ K3 is reported by Han [1] to be responsible for reversion after
the peak torque, as chemically confirmed by reactions in (2).

Ky is the kinetic constant representing the induction period, that can be excluded
from the computations assuming that the induction is evaluated by means of a first
order Arrhenius equation.

According to the reaction scheme (2), excluding induction, the following differential
equations may be written:
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A*
(a) [dt‘] = — (K1 + K») [A7]
d|R*
o Uk
d[R
(©) % = K2 [A] - K3 [Ri] 3)

Equation (3)(a) may be trivially solved by separation of variables, as follows:

() [ T] — [AT]Oe*(KH“KZ)(f*fi)

d [Ri] - -
(b) r =K, [Aﬂoe (K1+K2)(t—1;)
d[Ri] _ i
(©) dtl = ky [A}], e KK _ KRy @)

Once [AT] is a known analytically function, [A’f] can be substituted into Egs. (b) and
(¢) in (4) to provide [R}] and [R:]:

K |A*
(a) [RT] — K]1 [+ 113;) [1 _ e—(K1+K2)(t—li)]
d[Ry]

® dt

+ K3[R1] = K> [AT]O o~ (K1+K2)(t—1;) )

(5)(b) is a non homogeneous first order linear differential equation, which admits the
following solution composed by a general and a particular root:

K> ) )
Ril= AF [ —K3(i—1;) _ —(K1+Kz>(r—r,>] 6
LK1l K1+K2—K3[1]08 ¢ (6)

The final concentration of vulcanized rubber is thus [R}] -+ [R;]:

K, |A* B -
[Ri]1+ [Rf] = % [1 _ o~ (Ki+K2)( z,)]
+ L [A*] I:e—Kfi(T—li) _ e—(K1+K2)(t—ti)] (7)
Ki+ Ky — K3 Lo

(7) can be normalized with respect to [S], as follows:

_ R+ [Ri] __K [1 _e—(KH-Kz)(l—li):I
[S1o K1+ K>
N K> I:e—IQ(t—ti) _ e—(K1+K2)<t—t,-)] )
K+ Ky — K3
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Note that first derivative of (8) is:

d_ot — Klg—(K1+K2)(t—ti)
dt
o +K2 - [_K36—K3(r—ri>+(K1+K2)e—<K1+K2)(r—zi>] ©)
1 ajz — K3

Normally constants K » 3 are evaluated by least-squares best fitting [15]. A direct
evaluation that needs very trivial numerical routines is proposed herein for the first
time.

In Eq. (12), we make the hypothesis that:

K
lim 0 —og = —— (10)
t—+00 K|+ K>

Equation (10) provides a relation between constants K| and K5. In particular, K is

K dependent as follows:

1—
K, = YR

K (11)
oR

Assuming that the maximum of the normalized rheometer curve is reached at t = 1,
we obtain the relation:

da K>

e — 22 | _keeK3m—) (g LK ef(K.+Kz><thti)] -0
oh K1+K2—K3[ 3 + (K1 + K2)

12)

=ty

It is interesting to notice that Eq. (12) can be re-written as follows:

K1 4+ K>)2 o= (Ki+K2)(ty—1:)
Ks = (K1 2) (13)
Kie~(Ki+K)(tm—ti) 4 Kye—K3(m—1i)

And using Eq. (11):

k2 _KiGy=t)
g
_ R
K3 = Ky (p =) 14)
Kie e« 4+ %Klg—lﬁ(w—fi)

Equation (14) is particularly interesting because it allows to iteratively estimate K3 at
a fixed value of K. The algorithm used is explained in the pseudo-code of Table 2.

A typical K3—K interaction curve obtained for a practical case is depicted in
Fig. 2. The authors experienced some common features at different temperatures and
differ compound concentrations, as for instance:

1) The curve is regular and monothonic. Itis defined only for K| greater than the point
of intersection between the curve and the straight line K| + K> — K3 = LS ¢ 3.

Let’s indicate with K inin such minimum point.
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Table 2 Pseudo code for the determination of K3

Step 1: Fix a value for K| = K
Step 2A: Fix an initial value for K3 = K3(i) =0

k2 _Ki(y—1)
“R

Step 2B: Find a new value of K3 = KS(") = “R -
Kie %R +%K19_K§t>(‘M_‘i)
IF [K{" — K{"| <TOL (TOL desired tolerance) K{/’ = k{") END
ELSE k(" = k"
REPEAT Step 2B
REPEAT Step |

1 H —
/20 S (S Line K1+K2-K370
1.2 /

Curve dov/di]_ =0 Il
M

1 I/ O Solution

0.8

K min
0.6 , ]
0.4
0.2 /

0 0.5 1 1.5 2 2.5 3
K, [1/min]

K, [1/min]

Fig. 2 Typical K3—K interaction curve found numerically with the algorithm reported in Table 2

Table 3 Pseudo code for the determination of K| and K3

Step 1: Determine graphically K ]mi“ and fix a reasonable value for K "%
Step 2A: FOR K{ni“ < Ky < KP"™,1<i=<Ngq Nguq:number of
subdivisions K} = K{“i" + % (K{“a" — K{“i“)
Step 2B: With K{, find K3 on the curve of Fig. 2. Find K as
Ky = IZZR K
Step 2C: With K1, K7 and K3 evaluate the fitting property of the

numerical curve and compare it with experimental data, assuming as
fitting parameter the cumulative absolute error.

REPEAT Step 2A for all Kis

SELECT the curve exhibiting lower cumulated error.
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NR 130°C
@ . (b)
----- Experimental 0.12 —---- Line K|+K2—K3*(J
12 Numerical Curve da/d)_, =0
'
0.1
% . D Kr‘mn
g /ﬂ‘— il 008 O Solution
D08 o = 7
IS .= —_r/
= § 0.06 A
g 06 y =
=} /4 o
< Y/, Mo g
S 04 (-
/
;
02 L4 0.02
0 10 20 30 40 50 60 70 0 0.02 0.04 0.06 0.08 0.1 0.12
time [min] K] [1/min]
(7) 0.18
o
5
g ol6
£
Z 014
3
5012
5
o
E 0.08
S ! VAo M
Q k o
2 006
<
>
o 004
=
S 002
<
0 0 TN
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

time [min] time [min]

Fig.3 130 °C. a comparison between experimental (after normalization) and numerical rheometer curves.
b Evaluation of K3 by means of the iterative algorithm of Table 2 and implicit function of eq. (13). ¢ Family
of numerical theometer curves varying K from K{"" to K" = 3K ™ (black thick curve represents the
optimal one). d Representation of the absolute value of the total error for the family of rheometer curves
represented in subfigure ¢ (black thick curve represents the optimal solution)

2) The drop of the curve (first derivative) is particularly marked near K {“i“. Con-
versely, very small values of K3 are found with a corresponding K which is 2-3
times K{™".

We also assume that at scorch the rate of vulcanization is «y), i.e. from Eq. (9):

d K
d_(: :a(/):Kl—‘,—Kz:—l (15)
1=t; @R

The strategy adopted in this second phase to define constant K at the solution point
is the following:

1) We assume a trial value of the first derivative at the scorch point ( ‘fi—‘;‘ — ). Accord-
ing to Eq. (15), such condition reduces to select a trial value for K. l

2) With such trial value, through Eq.(11) and Fig. 2, K> and K3 are obtained respec-
tively, i.e. a numerical normalized rheometer curve can be built.

3) K that minimizes the absolute error of the numerical curve when compared with
the normalized experimental one is assumed as the solution of the optimization
problem.
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NR 140°C
(@, (b)
""" Experimental ==--- Line K‘H(I—KX:O
— Numerical -
12 02 Curve dcx/dq‘:‘M—o i
o
=] min
g o1 ] K|
2 il 015 4 O Ssolution
B s / ) e
N — L
= g
E g yui
E 0.6 = 0.1
=} —
= o
3 04 M
/ 0.05
0.2 \
0 0 HO——
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5 A,
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Fig.4 140 °C. a Comparison between experimental (after normalization) and numerical rheometer curves.
b Evaluation of K3 by means of the iterative algorithm of Table 2 and implicit function of Eq. (13). ¢ Family
of numerical rheometer curves varying K from K" to K" = 3K (black thick curve represents the
optimal one). d Representation of the absolute value of the total error for the family of rheometer curves
represented in subfigure ¢ (black thick curve represents the optimal solution)

4) A reasonable interval for the research of the optimal K variable is a-priori
assumed for the sake of simplicity. The lower bound is obviously constituted
by K {“i“. However, according to Eq. (15), ‘2—‘;‘ | 1=, DY, at least in principle, exhibit
infinite value at the scorch point, meaning that K| does not have an upper bound.
This notwithstanding, as already pointed out for K| exceeding 2-3 times K {nin,
K3 in practice vanishes, thus providing rheometer curves rarely in agreement with
experimental evidences.

For the sake of clearness, the pseudo code utilized in the paper to estimate K
and K3 is represented in Table 3. Here the search domain is subdivided in equally
stepped intervals and each interval extreme represented a sampled point (couple of
K1 and K3 values). However, it is worth noting that more sophisticated and effective
procedures may be easily implemented, including a Newton bisection method [26] or
meta-heuristic approaches like Genetic Algorithms [27].

The need to implement more complex numerical approaches is however here not
paramount, because the computational effort needed for the optimization remains
rather low even when the algorithm of Table 3 is adopted.
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Fig.5 150 °C.a Comparison between experimental (after normalization) and numerical rheometer curves.
b Evaluation of K3 by means of the iterative algorithm of Table 2 and implicit function of Eq. (13). ¢ Family
of numerical theometer curves varying K from K{"" to K" = 3K ™ (black thick curve represents the
optimal one). d Representation of the absolute value of the total error for the family of rheometer curves
represented in subfigure ¢ (black thick curve represents the optimal solution)

4 Numerical simulations

In this Section, the reliability of the iterative approach proposed is tested on the set of
experimental rheometer curves discussed in Sect. 2. Attention is focused exclusively
on the capabilities of the numerical approach to fit experimental evidences.

As already discussed, Fig. 1a shows the typical torque vs. time curves obtained
at the different cure temperatures. Reversion is clearly observed at 160 and 170 °C,
whereas it becomes negligible at 140 °C, and at 130 °C

Figure 1b is used to tune numerical kinetic constants. It represents the experimen-
tal vulcanization degree aexp (f) derived from average S’ (t) torque by means of the
relation proposed by Sun and Isayev [24]. As the difference between (S, 130°C —

rin 130°C) and (Sy,, 140°C — S| ; 140 °C) is lower than 2 %, the value at 130 °C
is used for the calculation of the degree of vulcanization according to [24].

In addition, the induction time is disregarded and Fig. 1b curves are simply shifted to
the origin. As already pointed out, indeed, rubber behavior at the beginning is viscous
and any kinetic model of vulcanization would fail to fit experimental evidences there,
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Fig. 6 160 °C. a Comparison between experimental (after normalization) and numerical rheometer curves.
b Evaluation of K3 by means of the iterative algorithm of Table 2 and implicit function of Eq. (13). ¢ Family
of numerical theometer curves varying K from K" to K" = 3K{™™ (black thick curve represents the
optimal one). d Representation of the absolute value of the total error for the family of rheometer curves
represented in subfigure ¢ (black thick curve represents the optimal solution)

simply because the approach chosen does not represent the physical phenomenon
occurring before the begin of vulcanization.

The results obtained by means of the numerical approach proposed in the paper are
represented from Figs. 3, 4, 5, 6 and 7, starting from normalized rheometer curves at
130 °C (Fig. 3) and ending with curves at 170 °C (Fig. 7).

For each vulcanization temperature (and hence for each figure), the following plots
are represented: in subfigures-a a comparison between experimental (after normaliza-
tion) and numerical rheometer curves is depicted; in subfigures-b the evaluation of
K3 by means of the iterative algorithm of Table 2 and implicit function of Eq. (13) is
provided; in subfigures-c the family of numerical rheometer curves varying K| from
K {ni“ to K" = pK {“in with p coefficient depending case by case (black thick curve
represents the optimal one) is depicted; finally in subfigures-d a representation of the
absolute value of the total error for the family of rheometer curves represented in
subfigure-c (black thick curve represents again the optimal solution) is provided.

From a detailed analysis of simulations results, it can be seen that the numerical
procedure proposed fits extremely well experimental results, with an almost perfect
agreement for all the temperatures inspected and even in the de-vulcanization range,
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Fig.7 170 °C. a Comparison between experimental (after normalization) and numerical rheometer curves.
b Evaluation of K3 by means of the iterative algorithm of Table 2 and implicit function of Eq. (13). ¢ Family
of numerical rheometer curves varying K from K{"" to K" = 3K{"" (black thick curve represents the
optimal one). d Representation of the absolute value of the total error for the family of rheometer curves
represented in subfigure ¢ (black thick curve represents the optimal solution)
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Fig. 8 Overall comparison among K; constants for the cases analyzed in the Arrhenius space
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when present. Small differences may be appreciated after a proper zoom of the curves
at the very beginning or near the initiation of reversion in some few cases, however
much less evident than deviations obtained applying simplified models available in
existing literature.

The numerical rheometer curve is very near to the experimental one in absence of
reversion, i.e. at low temperature (130 and 140 °C), but appears extremely satisfactory
even in presence of visible reversion (170 °C).

The total error estimation for the optimal solution appears almost constant increas-
ing the vulcanization temperature, compare for instance Figs. 3 and 7.

5 Conclusions

A novel closed form approach to determine kinetic constants describing incipient
curing, matured crosslinking and reversion in NR vulcanized with sulphur has been
presented in the paper.

Starting from a previously presented vulcanization model that allows deriving a
simple closed-form expression for the curing degree, the determination of the kinetic
constants is performed in closed form, without the need to utilize classic least squares
approaches. The model has been benchmarked on a NR blend vulcanized at five dif-
ferent temperatures. From simulations results, it was found that the kinetic constants
follow reasonably well an Arrhenius law, see Fig. 8, which represents one of the most
useful relationships in chemical kinetics, when an extrapolation of the behavior is
needed outside the experimentally tested temperature range. In Fig. 8 there is also a
comparison with K; numerical results found by Leroy et al. in [15]. In [15], Han’s
model is used and K; are evaluated by standard least-squares fitting. As can be noted,
the agreement for what concerns K; and K3 is almost perfect, whereas some dis-
crepancies are experienced for K;. This is not surprising, because the closed form
solution proposed requires an evaluation of K, through the definition of the reversion
percentage, see Eq. (11). With very little reversion or in absence of reversion, Eq. (11)
is clearly affected by high scatter. To confirm such deduction, it can be observed from
Fig. 8 that the evaluated values of K, for temperatures equal to 170 and 160 °C (i.e.
where reversion is clearly visible) are almost superimposable to those found by Leroy
etal. in [15].
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